Gamma irradiation-induced absorption in single-domain and periodically-poled KTiOPO4 and Rb:KTiOPO4

نویسندگان

  • R. S. COETZEE
  • S. DUZELLIER
  • J. B. DHERBECOURT
  • A. ZUKAUSKAS
  • M. RAYBAUT
  • V. PASISKEVICIUS
چکیده

We investigate the effect of gamma radiation on flux grown KTiOPO4 and Rb:KTiOPO4 samples, as well as their periodically poled variants. Specifically, we study the altered transmission due to color-center formation via gamma irradiation. We measured the transmission of our samples for varying radiation doses and demonstrate effective temperature annealing of gamma radiation induced color centers. We measured a maximum transmission difference of 2% in our samples, which was easily corrected with temperature annealing. No long term and permanent changes were found to be induced in our samples. © 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (140.3330) Laser damage; (190.4400) Nonlinear optics, materials. References and links 1. ASCENDS Workshop Steering Committee, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Mission NASA Science Definition and Planning Workshop Report (2008). 2. P. Ciais, D. Crisp, H. Denier van der Gon, R. Engelen, G. Janssens-Maenhout, M. Heiman, P. Rayner, and M. Scholze, Towards a European Operational Observing System to Monitor Fossil CO2 Emissions, Final Report from the expert group, European Comission (2015). 3. D. K. Killinger and N. Menyuk, “Remote probing of the Atmosphere using a CO2 DIAL system,” IEEE J. Quantum Electron. 17, 1917–1929 (1981). 4. M. Raybaut, T. Schmid, A. Godard, A. K. Mohamed, M. Lefebvre, F. Marnas, P. Flamant, A. Bohman, P. Geiser, and P. Kaspersen, “High-energy single-longitudinal mode nearly diffraction-limited optical parametric source with 3 MHz frequency stability for CO2 DIAL,” Opt. Lett. 34(13), 2069–2071 (2009). 5. A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008). 6. A. Eldering, C. W. O’Dell, P. O. Wennberg, D. Crisp, M. R. Gunson, C. Viatte, C. Avis, A. Braverman, R. Castano, A. Chang, L. Chapsky, C. Cheng, B. Connor, L. Dang, G. Doran, B. Fisher, C. Frankenberg, D. Fu, R. Granat, J. Hobbs, R. A. M. Lee, L. Mandrake, J. McDuffie, C. E. Miller, V. Myers, V. Natraj, D. O’Brien, G. B. Osterman, F. Oyafuso, V. H. Payne, H. R. Pollock, I. Polonsky, C. M. Roehl, R. Rosenberg, F. Schwandner, M. Smyth, V. Tang, T. E. Taylor, C. To, D. Wunch, and J. Yoshimizu, “The Orbiting Carbon Observatory-2: First 18 months of science data products,” Atmos. Meas. Tech. 10, 549–563 (2017). 7. D. M. Hammerling, A. M. Michalak, C. O’Dell, and S. R. Kawa, “Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT),” Geophys. Res. Lett. 39, L08804 (2012). 8. Y. Durand, J. Caron, P. Bensi, P. Ingmann, J.-L. Bézy, and R. Meynart, “A-SCOPE: concepts for an ESA mission to measure CO2 from space with a lidar,” in 8th International Symposium on Tropospheric Profiling, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2008), pp. 37–40. 9. Q. Wang, J. Geng, and S. Jiang, “2μm Fiber Laser Sources for Sensing,” Opt. Eng. 53, 61609 (2014). 10. U. N. Singh, B. M. Walsh, J. Yu, M. Petros, M. J. Kavaya, T. F. Refaat, and N. P. Barnes, “Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing,” Opt. Mater. Express 5(4), 827 (2015). 11. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, and M. S. Bowers, “Parametric amplification and oscillation with walkoff-compensating crystals,” J. Opt. Soc. Am. B 14, 460 (1997). 12. G. Arisholm, E. Lippert, G. Rustad, and K. Stenersen, “Efficient conversion from 1 to 2 microm by a KTP-based ring optical parametric oscillator,” Opt. Lett. 27(15), 1336–1338 (2002). 13. D. J. Armstrong and A. V. Smith, “All solid-state high-efficiency tunable UV source for airborne or satellitebased ozone DIAL systems,” IEEE J. Sel. Top. Quantum Electron. 13, 721–731 (2007). 14. G. Stoeppler, N. Thilmann, V. Pasiskevicius, A. Zukauskas, C. Canalias, and M. Eichhorn, “Tunable MidVol. 7, No. 11 | 1 Nov 2017 | OPTICAL MATERIALS EXPRESS 4138 #307132 https://doi.org/10.1364/OME.7.004138 Journal © 2017 Received 15 Sep 2017; revised 16 Oct 2017; accepted 16 Oct 2017; published 25 Oct 2017 infrared ZnGeP2 RISTRA OPO pumped by periodically-poled Rb:KTP optical parametric master-oscillator power amplifier,” Opt. Express 20(4), 4509–4517 (2012). 15. B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009). 16. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 microm source,” Opt. Lett. 31(12), 1878–1880 (2006). 17. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5 mm thick periodically poled Rbdoped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1, 201 (2011). 18. B. Boulanger, F. Laurell, C. Canalias, V. Pasiskevicius, and A. Pen, “Bulk PPKTP by crystal growth from high temperature solution,” J. Cryst. Growth 360, 52 (2011). 19. F. Bach, M. Mero, V. Pasiskevicius, A. Zukauskas, and V. Petrov, “High repetition rate, femtosecond and picosecond laser induced damage thresholds of Rb:KTiOPO4 at 1.03 μm,” Opt. Mater. Express 7, 744–750 (2015). 20. R. S. Coetzee, N. Thilmann, A. Zukauskas, C. Canalias, and V. Pasiskevicius, “Investigations of laser induced damage in KTiOPO4 and Rb:KTiOPO4 at 1 μm and 2 μm,” Opt. Mater. Express 5, 2090–2095 (2015). 21. A. Hildenbrand, F. R. Wagner, J.-Y. Natoli, M. Commandre, H. Albrecht, and F. Théodore, “Laser damage investigation in nonlinear crystals: Study of KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals,” Proc. SPIE 6998, 699815 (2008). 22. F. R. Wagner, G. Duchateau, J. Y. Natoli, H. Akhouayri, and M. Commandré, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115, 243102 (2014). 23. M. P. Scripsick, D. N. LoIacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66, 3428–3430 (1995). 24. B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical Studies of LaserInduced Gray-Tracking in KTP,” IEEE J. Quantum Electron. 35, 281–286 (1999). 25. S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96, 2023 (2004). 26. J. Hirohashi, V. Pasiskevicius, S. Wang, and F. Laurell, “Picosecond blue-light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” J. Appl. Phys. 101, 33105 (2007). 27. S. Tjörnhammar, V. Maestroni, A. Zukauskas, T. K. Uždavinys, C. Canalias, F. Laurell, and V. Pasiskevicius, “Infrared absorption in KTP isomorphs induced with blue picosecond pulses,” Opt. Mater. Express 5, 2951 (2015). 28. M. G. Roelofs, “Identification of Ti in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65, 4976–4982 (1989). 29. G. J. Edwards, M. P. Scripsick, L. E. Halliburton, and R. F. Belt, “Identification of a radiation-induced hole center in KTiOPO4,” Phys. Rev. B 48, 6884–6891 (1993). 30. A. Zukauskas, V. Pasiskevicius, and C. Canalias, “Second-harmonic generation in periodically poled bulk Rbdoped KTiOPO4 below 400 nm at high peak-intensities,” Opt. Express 21(2), 1395–1403 (2013). 31. M. J. Harris, “Spatial and temporal variability of the gamma radiation from Earth’s atmosphere during a solar cycle,” J. Geophys. Res. 108, 1435 (2003). 32. A. Ciapponi, W. Riede, G. Tzeremes, H. Schröder, and P. Mahnke, “Non-linear optical frequency conversion crystals for space applications,” Proc. SPIE 7912, 791205 (2011). 33. U. Roth, M. Tröbs, T. Graf, J. E. Balmer, and H. P. Weber, “Proton and gamma radiation tests on nonlinear crystals,” Appl. Opt. 41(3), 464–469 (2002). 34. M. V. Alampiev, O. F. Butyagin, and N. I. Pavlova, “Optical absorption of gamma-irradiated KTP crystals in the 0.9 — 2.5 μm range,” Quantum Electron. 30, 255–256 (2000). 35. B. R. Bhat, N. Upadhyaya, and R. Kulkarni, “Total radiation dose at geostationary orbit,” IEEE Trans. Nucl. Sci. 52, 530–534 (2005). 36. K. P. Ray, E. G. Mullen, T. E. Bradley, D. M. Zimmerman, and E. A. Duff, “A comparison between Co ground tests and CRRES space flight data,” IEEE Trans. Nucl. Sci. 39, 1851–1858 (1992). 37. H. Prieto-Alfonso, L. Del Peral, M. Casolino, K. Tsuno, T. Ebisuzaki, and M. D. Rodríguez Frías, “Radiation hardness assurance for the JEM-EUSO space mission,” Reliab. Eng. Syst. Saf. 133, 137–145 (2015). 38. G. J. Brucker, E. G. Stassinopoulos, O. Van Gunten, L. S. August, and T. M. Jordan, “The damage equivalence of electrons, protons, and gamma rays in MOS devices,” IEEE Trans. Nucl. Sci. 29, 1966–1969 (1982). 39. “Total dose steady-state irradiation test method,” ESA, ESCC, Basic Specif. No. 22900, 1–17 (2010). 40. G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39(27), 5058–5069 (2000). 41. M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, XCOM: Photon Cross Section Database (Version 1.5). (National Institute of Standards and Technology, Gaithersburg, MD, 2010). 42. P. V. Murphy and B. Gross, “Polarization of Dielectrics by Nuclear Radiation. II. Gamma-Ray-Induced Polarization,” J. Appl. Phys. 35, 171–174 (1964). 43. G. Wilson, J. R. Dennison, A. E. Jensen, and J. Dekany, “Electron energy-dependent charging effects of multilayered dielectric materials,” IEEE Trans. Plasma Sci. 41, 3536–3544 (2013). 44. Q. Jiang, M. N. Womersley, P. A. Thomas, J. P. Rourke, K. B. Hutton, and R. C. C. Ward, “Ferroelectric, conductive, and dielectric properties of KTiOPO4 at low temperature,” Phys. Rev. B 66, 94102 (2002). Vol. 7, No. 11 | 1 Nov 2017 | OPTICAL MATERIALS EXPRESS 4139

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5 mm Thick Periodically Poled Rb:KTiOPO4 for High Power Optical Frequency Conversion

A periodically poled bulk Rb-doped KTiOPO4 crystal with 5 mm aperture was fabricated at room temperature. The ferroelectric domain structure is shown to be homogeneous across the whole aperture with a deff of 11 pm/V. OCIS codes: (160.2260) Ferroelectrics; (190.4410) Nonlinear optics, parametric processes

متن کامل

Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator with periodically poled KTiOPO4

We report on a continuous-wave singly resonant optical parametric oscillator (SRO) based on periodically poled KTiOPO4. This is pumped by a frequency-doubled single-frequency Nd:YAG master oscillator power ampli®er system. Pump wave enhancement allowed for external oscillation thresholds around 200 mW. Up to 72 mW of idler and 28 mW of signal radiation were generated at 1.2 W pump power. Output...

متن کامل

Generation of a stable low-frequency squeezed vacuum field with periodically poled KTiOPO4 at 1064 nm.

We report the generation of a stable continuous-wave low-frequency squeezed vacuum field with a squeezing level of 7.4+/-0.1 dB at 1064 nm, the wavelength at which laser-interferometric gravitational wave (GW) detectors operate, using periodically poled KTiOPO4 (PPKTP) in a subthreshold optical parametric oscillator. The squeezing was observed in a broad band of frequencies above 700 Hz where t...

متن کامل

Polarization reversal and domain grating in flux-grown KTiOPO4 crystals with variable potassium stoichiometry

A significant decrease is observed in the dielectric dispersion, conductivity, coercive and internal fields of KTiOPO4 crystals grown with relatively high potassium concentration in the flux. A periodic domain structure with a period of 24.7 mm was fabricated on a 10 mm long crystal by electric field poling. Whereas standard flux-grown KTiOPO4 crystals can be periodically poled only at low temp...

متن کامل

Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones.

We present a simple polarization entanglemenet source based on type-II phase-matched parametric down-conversion in periodically poled KTiOPO4. By use of noncritical phase matching in a noncollinear geometry the single-crystal source emits a cone of polarization-entangled photons. Two beams on opposite sides of the cone are selected for measurements to yield an observed flux of 820 pairs/s per m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017